
SGAxe: How SGX Fails in Practice
Stephan van Schaik

University of Michigan
stephvs@umich.edu

Andrew Kwong
University of Michigan
ankwong@umich.edu

Daniel Genkin
University of Michigan

genkin@umich.edu

Yuval Yarom
University of Adelaide and Data61

yval@cs.adelaide.edu.au

Abstract—Intel’s Software Guard Extensions (SGX) promises
an isolated execution environment, protected from all software
running on the machine. A significant limitation of SGX is its
lack of protection against side-channel attacks. In particular,
recent works have shown that transient-execution attacks can
leak arbitrary data from SGX, breaching SGX’s confidentiality.
However, less work has been done on the implications of such
attacks on the SGX ecosystems.

In this work we start from CacheOut, a recent confidentiality
attack on SGX, which allows the retrieval of an enclave’s
memory contents. We show how CacheOut can be leveraged
to compromise the confidentiality and the integrity of a victim
enclave’s long-term storage. By using the extended attack against
the Intel-provided and signed architectural SGX enclaves, we
retrieve the secret attestation key used for cryptographically
proving the genuinity of enclaves over the network, allowing us
to pass fake enclaves as genuine. Finally, we analyze the impact
of our attack on two proposed SGX applications, the Signal
communication app and Town Crier, an SGX-based blockchain
application.

I. INTRODUCTION

Trusted Execution Environments (TEEs) are architectural
extensions, recently introduced in commodity processors,
which collectively provide strong security guarantees to soft-
ware running in the presence of powerful adversaries. TEEs’
promise to allow secure execution on adversary-controlled
machines has spawned many new applications [57, 76, 84,
98, 100], both in academia [7, 8, 11, 18, 24, 27, 38, 78, 98]
and industry [1, 2, 4, 22, 25, 39, 60, 63, 80]. Whereas several
TEEs have been proposed (e.g., ARM’s TrustZone [6, 70, 75]
or AMD’s Secure Encrypted Virtualization [53]), the currently
prevailing x86 TEE implementation is Intel’s Software Guard
eXtensions (SGX) [20].

To support private and secure code execution, SGX provides
isolated execution environments, called enclaves, which offer
confidentiality and integrity guarantees to programs running
inside them. While SGX’s security properties strongly rely
on the processor’s hardware implementation, SGX removes
all other system components (such as the memory hardware,
the firmware, and the operating system) from the Trusted
Computing Base (TCB). In particular, SGX ensures that the
processor and memory states of an enclave are only accessible
to the code running inside it and that they remain out of reach
to all other enclaves and software, running at any privilege
level, including a potentially malicious operating system (OS),
and/or the hypervisor. At a high level, SGX achieves these
strong security guarantees by encrypting enclave memory
and protecting it with a secure authentication code, making

the associated cryptographic keys inaccessible to software.
Finally, SGX provides a remote attestation mechanism, which
allows enclaves to prove to remote parties that they have been
correctly initialized on a genuine (hence, presumed secure)
Intel processor.

Notwithstanding its strong security guarantees, SGX does
not protect against microarchitectural side channel attacks.
As acknowledged by Intel, “SGX does not defend against
this adversary” [46, Page 115] arguing that “preventing side
channel attacks is a matter for the enclave developer” [45].
Starting with the controlled channel attack [94], numerous
works have demonstrated side channel attacks on or from
SGX enclaves [10, 21, 23, 32, 67, 91, 92]. Foreshadow [85]
and following transient-execution attacks [17, 56, 79, 86, 87],
demonstrated the capability of recovering contents from within
the enclave’s memory space.

Recognizing the danger, Intel released several patches, CPU
microcode updates, and even new architectures designed to
mitigate SGX side channel leakage via transient execution.
However, the fix for TSX Asynchronous Abort (TAA) [44, 88],
released in November 2019, was shown to be insufficient [79,
89, 90]. In particular, the CacheOut attack demonstrated the
capability to leak SGX data by first evicting the data from the
cache and then using TAA to recover it.

While CacheOut shows the ability to steal data from
enclaves, it stops short of investigating the implications of
this leak on the security of the SGX ecosystem. Given the
increasing adoption of SGX as an alternative to heavyweight
cryptographic protocols [2, 18, 31, 63, 98], there is clear
danger in deploying SGX-based protocols on current Intel
machines. With several SGX-based works aiming to offer
some security guarantees even in the presence of information
leakage, in this paper we ask the following questions:

What are the implications of information leakage from en-
claves on the security of the SGX ecosystem? In particular, can
SGX-based protocols maintain their strong security guarantees
in the presence of side channel attacks?

A. Our Contributions

In this work we show that the security of the SGX ecosys-
tem completely collapses, even in the presence of all currently-
published countermeasures. Specifically, we test CacheOut on
a fully updated machine, including a dedicated GPU to avoid
Intel’s Security Advisory SA-00219 [47], the latest SGX SDK
and Intel-signed enclaves for mitigating LVI [86], and all
of the countermeasures and microcode updates required to

stephvs@umich.edu
ankwong@umich.edu
genkin@umich.edu
yval@cs.adelaide.edu.au

mitigate TAA [44, 79, 88], PlunderVolt [69], Zombieload [79],
RIDL [87] and Foreshadow [85]. We show that despite activat-
ing all countermeasures, CacheOut [90] can effectively dump
the contents of SGX enclaves.

Moreover, we show that CacheOut does not need to execute
code within the enclave to dump its contents. Instead, it
works while the enclave is completely idle. Thus, the attack
bypasses all software-based SGX side-channel defenses, such
as constant-time coding and countermeasures that rely on
enclave code for ensuring protection [16, 26, 71, 77, 81].
Breaking the Integrity of Sealed Data. Next, going beyond
attacks on SGX’s confidentiality properties, in this work we
extend CacheOut to also breach SGX enclaves’ integrity.
Specifically, we target the SGX sealing mechanism [5], which
provides long-term storage of data, by securely generating
an encryption key used to seal data by encrypting it before
forwarding it to the operating system for long-term storage.

We use CacheOut to extract the sealing key from a victim
enclave. The main challenge is that the SGX SDK imple-
mentation of the sealing API [40] wipes out the sealing key
immediately after using it, leaving a short window in which
the key can be retrieved. After recovering the sealing key, we
use it to unseal and read the sealed information, then modify
and reseal it. As SGX provides no integrity mechanism to
detect such a change, the victim enclave now operates on data
corrupted by the attacker.
Breaking Remote Attestation Next, we turn our attention to
SGX’s remote attestation protocol, which allows an enclave to
prove to a remote party that it has been initialized correctly and
is executing on a genuine (presumably secure) Intel processor.
To attack attestation, we first use our attack on SGX’s sealing
mechanism and retrieve the sealing key of the SGX Quoting
Enclave. Notably, unlike previous works [79, 86, 90] which
build and sign their own quoting enclave, we attack a genuine,
Intel-signed, production enclave, which employs all of Intel’s
countermeasures for transient-execution attacks, including the
recent hardening for the LVI attack [86].

We then use the retrieved sealing key to unseal the persistent
storage of the Quoting Enclave, which contains the private
attestation key. We note that this attestation key is the only
differentiating factor between a fully secure SGX enclave
running on genuine Intel hardware and a malicious SGX
simulator offering no security guarantees. Thus, we can build
a malicious SGX simulator that passes Intel’s entire remote
attestation process. Performing remote attestation with the
provider’s server is usually the first task of any enclave
running on the user’s machine, resulting in a secure connec-
tion between the user’s enclave and provider’s servers. With
the machine’s production attestation keys compromised, any
secrets provided by server are immediately readable by the
client’s untrusted host application, while all outputs allegedly
produced by enclaves running on the client cannot be trusted
for correctness. This effectively renders SGX-based DRM
applications [35] useless, as any provisioned secret can be
trivially recovered. Finally, our ability to read enclave contest
and fully pass remote attestation also erodes trust in SGX-

based secure remote computation protocols such as [1, 2, 7,
8, 11, 18, 22, 24, 27, 38, 39, 76, 78, 80, 98] as users cannot
trust that their data will be properly protected by a genuine
SGX enclave.
Exploiting SGX’s Privacy Guarantees. Finally, we note
that Intel’s Extended Privacy ID (EPID) [52] severely com-
pounds the consequences of compromised attestation keys.
More specifically, when running in anonymous mode, EPID
signatures are unlinkable, meaning that an attestation output
cannot be linked to identity of the machine producing it [52].
This means that obtaining even a single EPID private key
allows us to forge signatures for the entire EPID group,
which contains millions of SGX-capable Intel CPUs. Thus,
the leak of even a single key from a single compromised
machine jeopardizes the trustworthiness of large parts of the
SGX ecosystem. Luckily however, the unlinkable attestation
mode is not recommended by default [52], allowing remote
stakeholders to recognize our attestation quotes as coming
from a different platform.
Undermining SGX-Based Protocols. To demonstrate the
concrete implications of our breach of SGX, we conduct case
studies examining how actual protocols, in both academic
software and commercial products, may fail in practice when
they rely upon SGX. We explore the Signal App [3] and Town
Crier [98], which was acquired by ChainLink, a cryptocur-
rency with a $1.5B market cap. We explore nuanced effects
that breaching the integrity and confidentiality of SGX has
on reliant protocols. This discussion is vital for securing the
future of SGX-reliant protocols and designing such protocols
to be resilient even when the underlying TEE is compromised.
Summary of Contributions. In this paper we make the
following contributions:
• We use CacheOut to obtain the sealing key of enclaves,

including architectural enclaves compiled and signed by
Intel (Section III).

• We show how to use the sealing key of the Intel’s Quoting
enclave in order to retrieve the machine’s attestation key
(Section III-C).

• We show how to use the retrieved attestation key to forge
SGX attestation quotes (Section IV).

• Finally, we discuss the implications of a broken attestation
mechanism on Signal and on Town Crier (Section V).

B. Current Status and Disclosure

As part of the disclosure of CacheOut [90], we notified
Intel of our findings in October 2019. While initial results
about CacheOut’s application to SGX were made public on a
mutually agreed upon date of January 27th, 2020, Intel did not
publish countermeasures mitigating CacheOut or the attacks
described in this paper. Finally, Intel indicated that microcode
updates mitigating the SGX leakage described in this paper
will be published on June 9th, 2020.

C. Threat Model

Following the SGX threat model, we assume a compromised
operating system where the attacker can install kernel modules

2

or otherwise execute code with supervisor (ring-0) privileges.
We assume that the hardware and software has been fully
updated with Intel’s latest microcode, and that the victim
enclave contains no software bugs or vulnerabilities. Finally,
we assume that the hardware is capable of supporting transac-
tion memory (TSX). While this feature has been disabled by
operating systems on all Intel machines released after 2018-
Q4, we used elevated privileges in order to re-enable TSX
RTM. We note that this does not violate the SGX threat model,
as the OS is untrusted, while Intel’s latest microcode update
forcibly aborts TSX transactions during SGX operations [44].

II. BACKGROUND

We now present background information on Intel’s Software
Guard Extensions and on microarchitectural attacks.

A. Intel Software Guard Extensions

Intel Software Guard Extensions (SGX) [5, 65] is an exten-
sion of the x86 64 instruction set, supporting secure execution
of code in untrusted environments. SGX creates secure execu-
tion environments, called enclaves, which protect the code and
data residing inside them from being maliciously inspected or
modified. Additionally, SGX provides an ecosystem for remote
attestation of enclaves’ software and the hardware on which
they run.

The SGX threat model assumes that the only trusted system
components are the processor and Intel-provided and Intel-
signed architectural enclaves. After booting, only the pro-
cessor is trusted. The trust is extended to the architectural
enclaves by hard-coding the public key used to sign them into
the processor. Other than the architectural enclaves, SGX does
not trust any software executing on the processor, including
the operating system, the hypervisor, and the firmware (BIOS).
The processor’s microcode, however, is considered part of the
processor and hence trusted.

For each enclave, SGX keeps an enclave-identity comprised
of the enclave developer’s identifier and a measurement rep-
resenting the enclave’s initial state. The developer’s identifier,
referred as MRSIGNER in SGX literature, is a cryptographic
hash of the public RSA key the enclave developer used to
sign the enclave’s measurement. The enclave measurement,
representing the enclave’s initial state, is a cryptographic hash
of those parts of the enclave’s contents (code and data) that its
developer chose to include in the measurement. The SDK im-
plementation includes in the measurement all contents added
to the enclave via EADD. Following the SGX nomenclature,
we refer to this measurement as MRENCLAVE.

B. SGX’s Sealing Mechanism

SGX provides enclaves with a mechanism for an encrypted
and authenticated persistent storage. During CPU production, a
randomly generated Root Seal Key, which is not kept in Intel’s
records, is fused in every SGX-enabled CPU. Using this key,
the CPU can derive a sealing key, which can be used to encrypt
and authenticate information from within the enclave’s address
space. Data that is sealed with this key, i.e., encrypted and

authenticated, can be safely passed to the operating system
for long-term storage, for example, on the computer’s disk.
SGX provides two types of sealing mechanisms, which we
now describe (See [5, 49] for additional details).
Sealing Using the Enclave’s Identity. As described in
Section II-A, each enclave has a unique field, called MREN-
CLAVE, which is a cryptographic hash of the contents used
to initialize the enclave code as well as some additional prop-
erties. Using the values of the Root Seal Key, MRENCLAVE,
and the CPU Security Version Number (SVN) an enclave can
use the EGETKEY instruction to derive a unique sealing key for
sealing data before passing it to the operating system for long
term storage. Note that as a consequence of this approach, for
the same Root Sealing Key (i.e., on the same CPU), different
software versions of the same enclave have different sealing
keys. This prohibits both data migration between different
versions of enclaves as well as using these sealed keys for
intra-enclave communication.
Sealing Using the Developer’s Identity. An alternative
option to the one discussed above is to generate the sealing
key using the Root Seal Key, the SVN, and MRSIGNER
(instead of MRENCLAVE). As explained in Section II-A,
MRSIGNER is a cryptographic hash of the public RSA key
of the enclave developer and there remains the same for all
enclaves developed by the same vendor. Thus, data sealed
in this way is accessible by different versions of the same
enclave, as well as by different enclaves belonging to the same
vendor.

C. Caching Hierarchy in Modern Processors

Modern processors contain a series of caching components
that all collaborate to bridge the speed gap between the fast
processor core and the slower memory, see Figure 1.

L2 Cache (256 KiB)

Write Path

Read Path Execution Unit

Fill Buffer (12 entries)L1-D Cache (32 KiB)New Path L1-D Cache (32 KiB)

Uncore

Fig. 1: Caching hierarchy in Intel processors.

When accessing memory, the processor first searches if the
data exists in the L1-Data cache. In case of a cache hit,
when the data is found in the cache, the accessing instruction
receives the data from the cache and proceeds to process it.
Conversely, in case of a cache miss, when the data is not
found in the cache, the processor resumes its search further
down the memory hierarchy until the data is found. When
data is retrieved from lower-level caches, it is often stored in
higher-level caches for possible future use.
Out-of Order Execution and Line Fill Buffers. To
exploit the inherent concurrency in software, the execution

3

engine of modern processors is out-of-order. That is, rather
than executing instructions in the order that is stipulated by
the program, the processor executes instructions as soon as
the data they process is available. Consequently, multiple
instructions may be in various stages of execution at the
same time. The main use of the line fill buffers (LFBs) is
to avoid locking the cache during cache-miss handling, in
order to allow concurrently-executing instructions to access the
cache. Specifically, when a cache miss occurs, the processor
allocates an entry in the LFB, which processes cache misses
asynchronously. When the data arrives from the lower levels
of the hierarchy, the LFB transfers the retrieved data to the
waiting instruction and copies it into the cache for potential
future use.
Cache Evictions. The capacity of the L1-Data cache is
typically relatively small (32 KiB in Intel processors). Hence,
when new data is being cached, old data has to be evicted
from the cache. In case the old data has not been modified,
it can just be discarded. However, if the data to be evicted
has been previously modified, the processor needs to percolate
the modifications in lower levels of the cache hierarchy, and
ultimately in the memory.

D. Microarchitectural Attacks

Cache Attacks. Because the behavior and the state of
microarchitectural components affects the execution speed of
programs, programs sharing the use of components can detect
contention and infer information on the execution of other
programs [28]. A large body of work exploits contention on
space in caches to recover cryptographic keys [13, 29, 30, 50,
59, 66, 73, 74, 96, 99] and other sensitive information [10,
33, 37, 95]. Temporal contention, i.e., exploiting the limited
capacity of the cache to handle concurrent accesses, can also
leak information [97]. Finally, cache contention can be used
to construct covert communication channels that bypass the
system’s protection guarantees [59, 64].
Transient Execution Attacks. Starting form Spectre and
Meltdown [55, 58], there has been a large body of work
on exploiting speculative and out-of-order execution to leak
information (see [15] for a survey). Specifically, in out-of-
order execution, the processor aims to predict the future
instruction stream in order to optimize the execution of future
instructions. However, when the processor mispredicts the
instruction stream it may execute instructions that deviate from
the program’s nominal behavior, bypassing the program’s con-
trol flow, or permission checks. When the processor discovers
the misprediction, it attempts to revert the incorrect execu-
tion by discarding the outcome of misspredicted instructions,
never committing them to the processor’s architectural state.
However, as discovered by Spectre and Meltdown [55, 58],
changes performed by incorrect transient execution do affect
the processor’s microarchitectural state, allowing attackers
to use the CPU’s microarchitecture as a means of storing
information. More specifically, in transient-execution attacks,
the attacker first causes transient execution of instructions that
access data not normally used by the program. The attacker

then uses a microarchitectural covert channel to exfiltrate the
data, thus bypassing the processor’s state reversion.
Meltdown-Type Attacks. While other transient attacks do
exist [9, 36, 51, 54, 55, 56, 61, 62], Meltdown-type attacks [15]
exploit delayed exception handling on Intel processors in order
to bypass hardware-backed security boundaries. Following
their original utilization in Meltdown [58] for reading kernel
data, such attacks have been used to recover the content
of floating-point registers [82, 89] as well as the L1-Data
cache [85, 93]. More recently, a new type of transient execu-
tion attacks was discovered, where the attacker is able to leak
information from internal microarchitectural buffers, including
the line fill buffers [79, 87], write combining operations [68],
and store buffers [14]. Dubbed Microarchitectural Data Sam-
pling (MDS) attacks by Intel, these attacks are likened to
“drinking from the firehose”, as the attacker has little control
over what data is observed and from what origin.

Recognizing the danger stemming from uncontrolled data
leaking from various internal microarchitectural data struc-
tures, two high level defense strategies have emerged. First,
for older processors, Intel have issues microcode updates that
overwrites the contents of various microarchitectural elements
such as internal buffers or L1-D cache [41, 43]. These were
then adopted by all major operating systems, flushing mi-
croarchitectural data structures on security domain changes. In
parallel, Intel has launched new processor architectures, which
attempt to mitigate transient execution issues in hardware.

E. CacheOut and LVI: Ineffective Flushing

While secure at first sight, recent works [86, 90] have
shown that Intel’s contents overwriting strategy does not fully
mitigate transient execution issues.
Load Value Injection (LVI). More specifically, LVI [86]
shows how an attacker can use the still leaky buffers in order
to inject values into the address space of a victim process or
SGX enclave. As the victim now performs transient execution
on incorrect data, it possible to temporary hijack the victim’s
control flow, or expose his secrets. Since LVI is particularly
effective against SGX enclaves, Intel has issued a series of
software mitigations [42], hardening enclave code and data
against injection attacks by restricting speculation.
CacheOut: Leaking Data via Cache Evictions. Next, buffer
overwriting does offer any protection in case the attacker
can somehow move data back after the buffer’s contents
was overwritten. Indeed, utilizing the observation that when
modified data is evicted from the L1-Data cache it can
sometimes end up in the LFB, the CacheOut [90] attack
was able to successfully bypass Intel’s buffer overwriting
countermeasures, again breaching the confidentiality of nearly
all secuirty domains.

Figure 2 is a schematic overview of the two scenarios
considered in CacheOut [90], where an attacker can observe
the victim’s data through the fill buffer (despite Intel’s buffer
overwriting countermeasures). The left shows how an attacker
can sample data that the victim is reading. Here, the the
attacker first ensures that the data the victim is about to read is

4

Evict

Write Secret

L1-D Cache

L1-D Cache

Fill Buffer

Sample
using TAA

W
riteback

FLUSH
RELOAD

Evict

Read Secret

L1-D Cache

Context

Sample
using TAA

FLUSH
RELOAD

Fill Buffer

Sampling Reads Sampling Writes

Switch

Context
Switch

Context
Switch

Context
Switch

2

3

4

1
1

2

3

4

L1d Cache

L2 Cache

Fig. 2: Overview of how the victim’s data can end up in the
LFB allowing an attacker to sample the data from the Fill
Buffers using an attack like TAA. Victim activity, attacker
activity, and microarchitectural effects are shown in green, red,
and yellow respectively. The context switches both illustrate
the OS flushing the MDS buffers before switching to the other
process as well as switching between actual Hyper Threads.
(from CacheOut [90])

no longer in the L1-D cache. The attacker does this by filling
up the L1-D cache with its own data to evict the victim’s data.
Now when the victim executes, the victim tries to read some
data again. However, since the data that the victim wishes to
read is no longer present in the L1-D cache, the CPU now has
to fetch the data from the higher-level caches or the physical
memory. Since cache misses have to be served through the
LFB, the attacker now has an opportunity to sample the data
from the LFB using an attack like TAA [44].

On the right we see how an attacker can sample data from
the victim when writing data. In this case, the victim will
write the data to the L1-D cache, as the CPU will handle
updating the higher-level caches and the physical memory in
the background. This presents an opportunity to the attacker
to leak the data. Similar to the case on the left, the attacker
fills up the L1-D cache to evict the victim’s modified cache
line. This forces the CPU to update the higher-level caches
immediately, as there is no longer space available in the L1-D
cache to host the victim’s data. In order to perform this update,
the data has to pass through the LFB. Now that the attacker
forcefully pushed the victim’s data into the LFB, it can again
use an attack like TAA to sample the data from the LFB.

In both cases the attacker can fully manipulate the micro-
architectural state to ensure that reads or writes originates from
the victim will have to pass through the LFB. Moreover, in the
case of writes, an attacker can force the data into the LFB and

sample it immediately without the intervention of a context
switch. This renders mitigations that rely on flushing these
leaky buffers during context switches ineffective.
Leaking SGX Enclaves via CacheOut. CacheOut further
demonstrates the use of the attack to build a read primitive that
leaks information from SGX enclaves. The read primitive uses
a modified SGX driver that exercises the control the operating
system has on the enclave to provide an interface that swaps
enclave pages out and in. In a nutshell, SGX includes two
instructions, ewb and eldu, which are used to export memory
pages from an enclave, while encrypting their contents, and to
import such encrypted pages back. Swapping a page out and
in leaves the contents of the page in the L1-Data cache, and
because the processor writes the contents into the enclave,
these contents are marked as ‘modified’. Concurrently with
swapping the pages, CacheOut evicts data from the L1-Data
cache, and uses the TSX Asynchronous Abort technique [44]
to leak the evicted data from the LFB. Using this technique,
an attacker can target specific bytes in the page that is being
swapped out and in, and retrieve them.

III. ATTACKING SGX’S SEALING MECHANISM

The CacheOut attack described in Section II-E is capa-
ble of breaching SGX’s confidentiality guarantees, effectively
dumping the contents of any SGX enclave available on the
target machine. It cannot, however, breach SGX’s integrity
guarantees as it is unable to modify the contents of the
enclave’s code or data.

In this section, we show an attack against SGX’s sealing
mechanism, which is a mechanism designed to provide en-
claves with encrypted and authenticated persistent storage. In
a nutshell, we use CacheOut to recover the sealing keys from
within the address space of Intel’s production quoting enclave.
Finally, we use the recovered sealing keys in order to decrypt
the long term storage of the quoting enclave, obtaining the
machines EPID attestation keys.

A. Extracting SGX Sealing Keys

Key derivation using EGETKEY leaves the sealing key in
the memory of the victim enclave. Thus, in principle, it is
possible to read this key using CacheOut [90]. However,
immediately after using it to encrypt or decrypt the sealed data,
the implementation of SGX’s sealing API erases the sealing
key from memory. Hence, to extract the key we need a method
for launching CacheOut during the data sealing or unsealing
process, before these keys are erased from the memory.
Tracing Quote Enclave Execution. We use a variant of
the controlled-channel attack [94] to induce an Asynchronous
Enclave Exit (AEX) when the enclave calls our functions of
interest. More specifically, we use mprotect() using the
PROT_NONE flag to unmap the page that contains our function
of interest. When the enclave then tries to execute the function,
it instead results in an AEX and a page fault, returning control
back to the operating system (or, more specifically, to the
attacker-controlled signal handler). However, since pages are
4 KiB in size, they may host multiple functions, meaning that

5

we have to carefully select the order of pages to unmap to
properly stop the quoting enclave at the point while the sealing
keys are still in memory. To achieve that, when control returns
back to our malicious signal handler, we mark the current
page as executable and proceed to unmap the page of the
next function of interest. Finally, we return control flow back
to SGX, in order to resume enclave execution until the next
function of interest.

Using the above describe method, we can trace the execution
of the quoting enclave until a point after the sealing keys have
been stored in memory but before they have been zeroed out.
Once the quoting enclave execution has reached this point, we
never resume its execution, proceeding to the next phase of
our attack.
Leaking Enclave Contents. Following the method of
Cachout [90], we use a modified SGX Linux driver that
repeatedly swaps the page holding the sealing keys in and
out of the physical memory, using SGX’s ewb and eldu
instructions with a short delay in between. As observed by
[90], this physical memory activity requires SGX pages to be
repeatedly encrypted and decrypted. Therefore, the CPU’s L1-
D cache will contain a decrypted copy of the page’s contents.
Next, using another Hyper-Thread on the same physical core,
the attacker uses CacheOut’s methodology, and evicts the
cache set whose values he would like to leak from the L1-
D cache to the CPU’s LFB. Finally, the attacker uses TAA
to recover the values from the CPU’s LFB. Finally, note that
since the victim enclave never resumes execution, no software
mitigation can be used to prevent the information from leaking.
Pinpointing Functions of Interest. The above descrip-
tion assumes that the attacker knows the precise execution
sequence of functions inside the quoting enclave from the
get_quote() function to the AES decryption operation
used to unseal the EPID keys. To recover this calling sequence,
we first compiled our own version of the quoting enclave
using Intel’s SDK and PSW. We then executed the quoting
enclave in debug mode with dummy inputs, tracking execution
up to the sgx_rijndael128GCM_decrypt() function,
which is used to decrypt the (dummy) EPID blob. The sgx_-
rijndael128GCM_decrypt() function proceeds by call-
ing l9_aes128_KeyExpansion_NI() to perform AES
key scheduling, expanding the AES sealing key into individual
AES round keys. Next, in order to stop enclave execution
immediately after the key scheduling, we leverage the fact that
the recently-introduced LVI countermeasures [42] mean that
enclaved functions no longer return using the ret instruction
directly, but instead call __x86_return_thunk() to re-
turn from a function. Thus, by unmapping the page containing
__x86_return_thunk() just after the execution of of
l9_aes128_KeyExpansion_NI(), we can run the quot-
ing enclave until the end of the AES key expansion process,
and stop its execution immediately after it, while the round
keys are still present in the enclave’s memory. Experimentally
verifying this, we were able to recover some round keys from
this self-compiled and signed quoting enclave, verifying the
ground truth using a debugger.

Attacking Intel’s Production Quoting Enclave. After our
practice run with our self-compiled quoting, we proceeded to
attack SGX’s official quoting enclave, as compiled and signed
by Intel Unfortunately, the binary supplied by Intel lacks the
debugging symbols from before, and the debugger was not
able to insert breakpoints or dump memory. Therefore, we
first stripped Intel’s quoting enclave from its signature, and
ran it in debugging mode using our own key and dummy
inputs. We then located the functions of interest required to
implement the above unmap-execute-remap strategy, by using
a debugger and comparing the assembly of Intel’s quoting
enclave with our self-compiled version. After determining the
memory address of the required function, we implemented the
above strategy blindly (i.e., without the aid of the debugger)
against the production quoting enclave.

B. Empirical Evaluation

Experimental Setup. The experiments performed in this
section were conducted using an Intel Core i9-9900K (Coffee
Lake Refresh) CPU, running Linux Ubuntu 18.04.4 LTS with
a 5.3.0-53 generic kernel and microcode update 0xcc (the
latest one released by Intel at the time of writing). We have
used Intel’s SGX SDK version 2.9.100.2 and version 2.9.100.1
of the Intel Quoting Enclave, which is the latest at the time
or writing and includes software hardening against the recent
LVI transient execution attack [86].

As the Coffee Lake Refresh architecture has hardware
mitigations against Meltdown, Foreshadow/L1TF, and MDS,
Hyper-Threading is considered safe and is therefore left en-
abled. We have also re-enabled TSX support (which is off by
default on these machines). However, since SGX operations
force TSX aborts [44], this configuration is also considered
safe by Intel for running SGX enclaves. Since the integrated
Intel GPU is considered to be insecure [47], we installed
a dedicated GPU, disabled the integrated GPU and enabled
PlunderVolt mitigations [69]. Finally, we have verified that the
system was indeed in a safe configuration using Intel’s remote
attestation example*, which outputted Enclave TRUSTED
from Intel’s Attestation Server (IAS). This implies that Intel
considers our configuration as trustworthy and secure for SGX
operations.
Key Extraction. We ran the production quoting enclave five
times, each time using the above-described strategy to stop
its execution precisely after the generation of the AES round
keys corresponding to the EPID sealing key. Next, using our
technique to leak enclave contents, we have attempted to read
the memory locations corresponding to the AES round keys.
Out of the 176 bytes corresponding to round keys, we found
that on average 148.6 bytes (or about 84%) were correctly
recovered across our five attempts.† However, as we do not
know which key bytes are wrong, we resort to algorithmic
methods for recovering AES keys from noisy information
which we now describe.

*https://github.com/intel/sgx-ra-sample
†These statistics were later computed once the corresponding sealing key

was successfully recovered.

6

https://github.com/intel/sgx-ra-sample

Core

Round Key N

Round Key N+1

Fig. 3: In the 128-bit AES key schedule, four bytes from a
round key are determined by five bytes of the previous round
key.

C. EPID Key Recovery

Before describing our method for recovering the AES
sealing key from the noisy AES round keys we extracted in
Section III-A, we present an overview of AES’s key scheduling
algorithms.
AES Key Scheduling. As 128-bit AES uses 10 encryption
rounds, the key scheduling algorithm generates 10 round keys
where each round key is four 32-bit words. Each round key
is computed either by XOR’ing a word from the previous
round key (or the initial key) with the previous word in the
current round key; or by performing the key schedule core
which rotates the bytes in a word and then maps each byte
to a new valuea and XOR’ing the result together with another
word from the previous round key. See Figure 3 for an outline
of how to generate round key n+ 1 from round key n.

Next, consider the derivation of round key n+1 from round
key n. To compute each byte in round key n + 1, we only
need two bytes, one from the previous 32-bit word and one
from round key n (Figure 3). Thus, as initially observed by
Halderman et al. [34], it is possible to detect an correct errors
in the AES round keys, by ensuring that each byte is consistent
with the values of the two bytes used to compute it.
Recovering the Sealing Key. To recover the AES sealing of
SGX’s quoting enclave from the data obtained in Section III-A,
we used a technique similar to [34]. More specifically, the
information we collected using our attack contains multiple
candidates for each byte offset. Next, inspecting the layout of
the binary of the SGX quoting enclave compiled and signed
by Intel, we are able to deduce the exact mapping between
addresses and round keys.

Observing the data collected across the five attestation runs
performed in Section III-B, for each round key 1 ≤ n ≤
10 and for each byte, we assume that the top-1 candidate is
indeed the correct value for the byte, and proceed to compute
a candidate for the next round key (n + 1) as illustrated in
Figure 3. Once we have computed the candidate round key n+
1, we can check every byte of the candidate for the n+1 round
against the observed leakage data. Furthermore, since the AES
key schedule is a reversible operation, given any two out of
three bytes, that is two for the input and one for the output,
we can compute what the third byte should be and check if
the result is among the candidates. We use this technique to
filter out the candidates that are part of an AES key schedule

from our traces and are able to observe multiple complete AES
round keys.

Finally, we note that it is possible to compute all of the
AES round keys, and the original encryption key, any given
AES round key. Thus, using the above-described technique, we
were able to recover the sealing key for Intel’s quoting enclave
from the data obtained in Section III-B within seconds using
a regular laptop computer.
Unsealing the Machine’s EPID Attestation Key. Having
successfully recovered the AES sealing key of the machine’s
quoting enclave, we proceeded to unseal the EPID key blob.
Upon decrypting the blob and verifying the corresponding
authentication tag, we were able to obtain the machine’s
private EPID keys used for SGX attestation in both linkable
and unlinkable modes.

IV. ATTACKING SGX ATTESTATION

One of most compelling integrity properties that SGX pro-
vides is the ability of an enclave to attest to a remote verifying
party that it is running on genuine Intel hardware and not on an
SGX simulator. This attestation process proves to the remote
party that the enclave leverages the data confidentiality and
execution integrity properties provided by SGX and, therefore,
the remote party can transfer secret data to the enclave while
being assured that the enclave will not intentionally leak the
secret data. Finally, attestation also allows the remote party to
trust that the enclave’s outputs are the result of a trustworthy
correct execution, as opposed to being crafted via a malicious
simulator.

Having recovered the machine’s EPID attestation keys in
Section III, in this section we show how to construct a
malicious simulator which passes attestation as if it was an
SGX enclave running on a genuine Intel processor, while
executing the enclave code outside of an actual enclave, in
an arbitrary (and possibly incorrect or leaky) ways. Finally, as
the private attestation keys are all that distinguish genuine Intel
hardware from potentially malicious simulators, the remote
verifying party has no way of distinguishing between the two
and thus cannot trust the computation’s output to be correct.

Before describing our attack, we now provide some back-
ground about SGX’s provisioning, quoting, and attestation
processes.

A. SGX Remote Attestation

The remote attestation process allows a remote verifying
party to verify that a specific software is correctly initialized
and executes within an enclave, on a genuine Intel CPU. At
a high level, this is performed as follows (see [52] for an
extended discussion).

In addition to the Root Sealing Key (Section II-B), every
SGX-enabled CPU is also shipped with a randomly-generated
Root Provisioning Key (Step 1, Figure 4). However, unlike
the Root Sealing key, Intel does retain a copy of the Root
Provisioning Key, as it acts as a shared secret between Intel
and every individual CPU. Next, Intel provides two special

7

CPU

Provision
Enclave

Intel
Attestation

Service

Intel
Provisioning

Service

Attestation
Key

Provisioning

Sealed
EPID key

Quoting
Enclave

User
Enclave

quote

report verificationquote

Key
Generation

Facility
Root Seal

Key

Root
Provision

Key

1

2

3

4

5
6

Verifier

Fig. 4: SGX’s Attestation Process.

enclaves, called the Quoting Enclave and the Provisioning
Enclave which are used in the attestation process.
Attestation Key Provisioning. The initialization phase of the
SGX attestation protocol consists of the Provisioning Enclave
contacting Intel’s provisioning server, transmitting the CPU’s
provisioning ID, and claimed Security Version Number (SVN).
As the provisioning ID uniquely identifies a specific CPU, it is
only accessible to the Intel-signed Provisioning Enclave and is
sent encrypted to the provisioning server under Intel’s public
key. After recovering the root provisioning key, corresponding
to the CPU’s provisioning ID, the provisioning server and
Provisioning Enclave proceed to execute the Join phase of
Intel’s Enhanced Privacy ID (EPID) protocol [12], using the
root provisioning key as a shared secret (Step 2, Figure 4).

At a high level, Intel’s EPID protocol is a type of group
signature that allows a CPU to sign messages (using its private
signing keys) without uniquely disclosing its identity. When
executed in unlinkable mode, all that an external observer
(e.g., Intel) can do is to verify the signature (thereby becoming
convinced that it was signed by a genuine Intel CPU belonging
to the group), without being able to link it to any specific Intel
CPU or to other signatures it previously signed. See [12] for
additional discussion.
Sealing the EPID Key. The Join phase of the EPID protocol
results in the Provisioning Enclave obtaining a private EPID
signing key, which is not known to Intel. The Provisioning
Enclave then generates a sealing key for sealing the EPID
signing key, using the CPU’s Root Sealing key, its SVN and
the MRSIGNER value of the Provisioning Enclave. It then
seals the private EPID key using this sealing key and outputs
it to the OS for long term storage (Step 3, Figure 4). Notice
that as the Provisioning Enclave is provided and signed by
Intel, its MRSIGNER value is a hash of Intel’s public key.

Consequently, any Intel-signed enclave can unseal the CPU’s
private EPID key by regenerating the sealing key used to seal
it. While this design feature is indeed useful, as it allows the
Quoting Enclave (also signed by Intel) to unseal the private
EPID key, it is also dangerous as the OS actually has an
encrypted copy of the CPU’s private EPID keys.
Local Attestation. When an enclave wants to prove to a
remote verifier that it is running on genuine Intel hardware
with a specific security version, it first needs to prove its
identity to the Quoting Enclave, which is another special
enclave provided and signed by Intel, via a process referred to
by Intel as local attestation [5, 49]. At a high level, this is done
by having the proving enclave use the ereport instruction,
which prepares a report containing the MRENCLAVE and
MRSIGNER values of the proving enclave. The report is also
signed using a key that is only accessible to the Quoting
Enclave. The proving enclave then passes the report to the
Quoting Enclave, which proceeds with the remote attestation
process (Step 4, Figure 4).
Remote Attestation. Upon receiving the report from the
proving enclave, the Quoting Enclave performs the remote
attestation process which we now describe. Indeed, after
verifying that the report was correctly signed by the ereport
instruction, the Quoting Enclave proceeds with unsealing the
EPID private key that was originally sealed by the Provisioning
Enclave. Recall that the EPID private key was sealed using a
sealing key derived from the CPU’s SVN version, Root Sealing
Key, and the MRSIGNER value of the Provisioning Enclave.
As both the Quoting Enclave and the Provisioning Enclave
are signed by Intel (and thus have the same MRSIGNER
value), the Quoting Enclave can regenerate this sealing key
and subsequently unseal the private EPID key. Next, using
the unsealed private EPID signing key, the Quoting Enclave
executes the Sign phase of the EPID protocol and signs the
report given to it by the proving enclave, creating an attestation
quote. Finally, the Quoting Enclave returns the quote to the
proving enclave, which in turn forwards it to the remote
verifying party (Step 5, Figure 4).
Attestation Verification. After the proving enclave sends
the signed quote to the remote verifying party, the remote
party interacts with Intel’s Attestation Server (IAS [48]) and
provides it with the quote it obtained from the Quoting Enclave
(Step 6, Figure 4). Next, IAS performs the Verify phase of the
EPID protocol while ensuring that the signer’s private EPID
key has not been revoked by Intel. Intel’s server completes
the attestation by sending its response (OK, SIGNATURE_-
INVALID, etc.) to the remote party. The server’s response
also contains the quote itself and is signed with Intel’s signing
key, generating a signed attestation transcript which can later
be verified by any party that trusts Intel’s public key.

B. Breaking SGX Attestation

In this section, we describe our attack on SGX’s attestation
protocol. As explained above, the Quoting Enclave, which can
access the EPID signing keys, will not sign a local attestation
report without first verifying it. Moreover, as mentioned in

8

Section IV-A above, the operating system actually has a copy
of the EPID private keys, which are sealed by a key derived
from the CPU’s Root Sealing Key. Our attack thus proceeds
as follows.
Step 1: Recovering the Sealing Keys. Using the attack
described in Section III on the Quoting Enclave, our attack
recovers the sealing keys used for sealing the EPID signing
keys.
Step 2: Unsealing the EPID Signing Keys. With the above
sealing keys, our attack proceeds to unseal the private EPID
keys, originally sealed by the Provisioning Enclave.
Step 3: A Malicious Quoting Enclave. Using the source
code of Intel’s quoting enclave [40], we have constructed
a malicious quoting enclave that signs any local attestation
report with the EPID keys, obtained in Step 2 above, without
first verifying it.
Step 4: Breaking Attestation. Consider a malicious software
that would like to masquerade as a specific enclave and prove
its “authenticity” and SGX security properties via remote
attestation. Given an enclave to masquerade, the malicious
software first generates a false local attestation report with the
values of MRENCLAVE and MRSIGNER corresponding to
the enclave it wants to masquerade, as well as other metadata
required for generating the local attestation report. It then
sends this report to our malicious quoting enclave.

We notice here that the malicious software is unable to
sign the local attestation report, as it doesn’t have access
to the appropriate signing key. However, as our malicious
quoting enclave does not verify the report, the report does
not have to be signed. Next, using the unsealed EPID keys,
our malicious quoting enclave generates an attestation quote
by signing the local (false) attestation report, which is then
sent to the remote party. Finally, the remote verifying party
attempts to verify the malicious quote using Intel’s Attestation
Server (IAS). As the quote was indeed correctly signed by
the malicious quoting enclave using genuine and non-revoked
EPID keys, Intel’s attestation server will accept the malicious
quote and generate a signed transcript of the response. The
transcript falsely convinces the remote party that the enclave is
running on a genuine Intel CPU, which is designed to provide
confidentiality and integrity, while it is actually running under
the attacker’s control, outside of SGX, and thus does not offer
any security guarantees.

C. Empirical Evaluation

In this section, we empirically demonstrate the feasibility
of our attack on SGX’s attestation mechanism.
Extracting EPID Keys. As mentioned in Section III-C,
we have successfully extracted the EPID sealing keys from a
genuine SGX quoting enclave and subsequently unsealed the
machine’s private EPID keys. After unsealing the machine’s
private EPID key, we modify our malicious quoting enclave
to directly provide the decrypted EPID blob as well as the
additional MAC text. We confirmed that our malicious quoting
enclave functions correctly by first testing the get_quote()
call to see if we can successfully sign our reports. Next, we

confirmed the correctness by using Intel’s example of how
to perform Remote Attestation using SGX and running it with
our malicious quoting enclave. Finally, we performed the same
test using our malicious quoting enclave on a Whiskey Lake
machine that was not able to pass remote attestation due to
an issue with its integrated GPU [47], which now appears to
be trusted by Intel as it claims to be the Coffee Lake Refresh
machine from Section III.
Signing Fake Attestation Quotes. Demonstrating our
ability to sign arbitrary attestation quotes, we created a local
attestation report setting the MRENCLAVE field, “represent-
ing” the SHA-256 of the enclave’s initial state, to be the
string “This enclave should not be trusted”, the MRSIGNER,
“representing” the SHA-256 of the public key of the enclave
writer, to be “SGAxe: How SGX Fails in Practice”, and the
report’s debug flag to 0, thereby indicating that the enclave
is a production enclave. We have also populated the report’s
body (commonly used for establishing a Diffie-Hellman key
exchange with the enclave corresponding to the report) to be
“Mary had a little lamb, Little lamb, little lamb, Mary had
a....”. Finally, we signed the report using our malicious quoting
enclave using our extracted EPID keys, thereby producing an
attestation quote.
Quote Verification. To verify the validity of our quote,
we contacted Intel’s Attestation Server (IAS) and provided
it with the above generated quote. As explained in [12, 52],
the attestation server will only approve the quote if it can
verify that the quote’s EPID signature is correct. Since we
have correctly extracted a non-revoked EPID private signing
key, using version 3 of the attestation API [48], the attes-
tation server deemed our quote as correct and replied with
“isvEnclaveQuoteStatus: OK”. The IAS also signed
its response with Intel’s private key and accompanied it
with the appropriate certificate chain leading to Intel’s CA
certificate.
Attestation Protocol Versions. While Intel’s official remote
attestation example uses version 3‡, the documentation of the
IAS API [48] does mention a recently introduced support
of version 4. At a high level, the difference between the
two versions revolves around the use of LVI [86] software
hardening countermeasures [42]. As Intel has no way of
remotely verifying if such hardening was perform or not, on
machines vulnerable to LVI (nearly all currently available Intel
machines), version 4 of the attestation protocol outputs SW -
HARDENING NEEDED which indicates that our malicious
quoting enclave’s “has been verified correctly but due to cer-
tain issues affecting the platform, additional SW Hardening in
the attesting SGX enclaves may be needed” [48, Page 22]. Intel
further instructs “the relying party should evaluate...whether
the attesting enclave employs adequate software hardening
to mitigate the risk”. This indicates that Intel asks enclave
providers to trust their own enclaves only if they have per-
formed LVI mitigations [42], without being able to remotely
verify so. Using version 3 of the attestation however, removes

‡https://github.com/intel/sgx-ra-sample

9

https://github.com/intel/sgx-ra-sample

this message, results on an “isvEnclaveQuoteStatus:
OK” status, meaning that the enclave is fully trusted. In a
deployment scenario, we expect most SGX enclaves to be
hardened against LVI attacks, having their vendors either use
version 3 of the attestation protocol, or treat the SW HARD-
ENING NEEDED message of version 4 as OK (as already
done by Signal§).

V. SUBVERTING SGX-BASED PROTOCOLS

We will now proceed to explore the implications of com-
promising one of SGX’s attestation keys, as demonstrated in
Section IV. A number of recent works, both academic [7, 8,
11, 18, 24, 27, 38, 78, 78, 98] and otherwise [1, 2, 4, 22, 25,
39, 60, 63, 80], have begun to incorporate SGX into the design
of their systems. If this is not done with careful consideration
of what guarantees SGX actually provides, however, reliance
upon SGX actually weakens the system. The three following
case studies serve to highlight how misplaced trust in SGX
can subvert the security of an entire system.

A. Subverting Town Crier

A long standing problem facing the adoption of smart
contracts [83] is the difficulty of bridging the gap between
contracts operating on the blockchain and real world data.
Town Crier [98], which was recently acquired by ChainLink,
a cryptocurrency with over $1.5 billion in market capital,
aims to address this within the Ethereum blockchain by
providing authenticated data oracles. By combining an on-
chain smart contract frontend with an SGX enabled, off-chain
backend, Town crier can reliably fetch data from HTTPS
enabled websites onto the chain. By using SGX as a blackbox,
and assuming that its security guarantees hold, Town Crier
leverages SGX to guarantee the correctness of the data that is
fetched onto the chain. Assuring that the data is correct and
protected from tampering is critically important, as financial
derivatives may potentially rely upon said data, thereby giving
malicious entities a strong financial incentive to modify the
data in their favor.
Data Flow. The Town Crier data flow is as follows: reliant
contracts request data from these oracles by sending messages
to the oracle’s smart contract front-end. The back-end runs
within an enclave, and fetches the requested data. The data is
then delivered to the chain by sending a message from a wallet
whose private ECDSA key is known only by the enclave;
clients must verify the SGX attestation of the enclave’s code
and the public key of its associated wallet. Assuming the
correctness of SGX, this guarantees that messages delivered
from the corresponding wallet originated from the enclave,
whose code has been attested to.
Restricting SGX Compromise. While the implication of
breaching the integrity of the SGX enclave is straightfor-
ward (the compromised enclave can report incorrect arbitrary
answers to queries), Town Crier aims to hedge against the
compromise of a single SGX instance via replication. This is

§https://github.com/signalapp/sgx common/pull/1#issue-395160348

potentially complicated, however, by the anonymity provided
by Intel’s EPID signature scheme.

Intel’s EPID signature scheme can be run with either a
fully anonymous attestation policy, or a pseudonymous policy.
In the former, EPID signatures are completely unlinkable,
meaning that an attestation cannot be linked to the identity
of the machine that produced it. This means that the attacker
can leverage the attestation key obtained by compromising
just a single SGX machine to forge an arbitrary number of
attestations for Town Crier enclaves, all compromised by the
attacker, but seemingly running on different machines.

This makes it difficult to rely on replication for security
against SGX compromise; relying contracts and clients would
need to be especially judicious about which SGX enclaves to
trust, which defeats the purpose of using SGX to remove trust
from the data oracle operator. As an example, an adversary
who has compromised a single SGX instance can create a
seemingly benign Town Crier contract that takes a majority
vote from numerous seemingly separate SGX machines. Since
the attacker can forge signatures for each “separate” SGX
machine, the adversary has complete control over the data that
the contract receives and distributes.

B. Subverting Signal’s Private Contact Discovery

The Signal messenger app is a popular platform for sending
end-to-end encrypted messages between smart phone contacts.
To facilitate this, Signal plans to use SGX for Private Contact
Discovery [63] (discussed in this section) as well as for Secure
Value Recovery [4, 60] (discussed in Section V-C).
Building a Social Graph. Signal builds its social graph by
piggybacking upon the network composed of users’ contacts
that they already store on their phones. This means that when
a user joins Signal, she needs to discover which of her contacts
are also on Signal before she can begin to contact them.
Naively, this can be accomplished by having users submit
hashes of their contacts to the Signal server, with the server
responding by indicating which contacts are registered with
them.

This process, however, can potentially expose a user’s
contacts to the Signal server, as a dictionary attack against
the hashed passwords is computationally feasible, given the
small number of possible pre-images. This can be undesirable
if users do not trust the server, either because the operator’s
themselves are untrustworthy, or if the user is concerned that
the server’s database can be compromised by a malicious
third party (e.g. through a successful hacking attempt or a
subpoena).
SGX for Contact Discovery. To address this, Signal has
proposed moving this contact discovery service to within an
SGX enclave [63]. Users would send their contacts to the
enclave, which would then match them against the set of
registered users and return the intersection. To assure the
confidentiality of the users’ contact list, users would first need
to verify via remote attestation that the enclave is executing
the correct code. To ensure that the server learns nothing about

10

https://github.com/signalapp/sgx_common/pull/1#issue-395160348

the clients’ contact books, Signal also designed their contact
discovery service to use an oblivious hash-table construction
to protect against cache side-channel attacks on the enclave.
Leaking Contacts. By completely breaching SGX in the
manner described in Section IV, a malicious Signal server
would be able to create an enclave that exposes all of the data
it receives, while at the same time proving to clients via remote
attestation that the enclave is performing the benign, published
operations of private contact discovery. This would enable
them be able to read out the users’ hashed identifiers and
perform a dictionary attack to learn the contents of the users’
address book, thereby nullifying the purpose of incorporating
SGX into private contact discovery.

C. Subverting Signal’s Secure Value Recovery

Signal has also developed a technology called Secure Value
Recovery, which is designed to help facilitate secure and
private cloud storage [4, 60]. Briefly, they propose a system
that allows users to encrypt and decrypt their data on the cloud
with their password, while at the same time protecting against
offline brute force attacks on the password.

This is accomplished by combining a value expanded from a
user’s password (called c1) and a random 256 bit value (called
c2) to derive the data encryption key. The entropy provided by
c2 prevents an attacker from bruteforcing the encryption key,
and it is stored within an SGX enclave on the server. In the
event that the user loses their encryption key (e.g. loses their
phone or latop), the user needs to re-compute c1 and c2 to
derive the encryption key. The user can present their expanded
password to query the enclave for c2, and can recover c1 by
simply re-expanding her password.
Preventing Brutce Force Attacks. In order to realize the
benefit of using c2 to prevent offline brute force attempts, the
SGX enclave must effectively limit the number of times one
can query for c2. Signal accomplishes this by designing an
enclave that stores the number of remaining c2 queries in a
Raft [72] distributed log, where the other nodes are also SGX
enclaves thay verify each other through remote attestation.
This enables the log to live entirely in SGX memory; storing
the log on disk is not an option because an attacker can “roll
back” the state of the log by simply plugging in an identical
hardrive after all attempts have been exhausted.
Leaking c2. By breaching the confidentiality of the enclave,
an attacker can extract c2 and gain an unlimited number of
attempts to brute force users’ passwords. The more interesting
implication, however, is that if an attacker can compromise any
single node used in the Raft consensus protocol, then she can
perform the attack from Section IV to gain complete control
of that node, and the other nodes will trust that the malicious
node is behaving properly due to remote attestation. As noted
by Copeland and Zhong [19], Raft’s guarantees on consensus
dissolve completely in the presence of even a single Byzantine
node. The malicious node can trivially become the Raft leader
[19]; because the Raft leader is the sole point of contact with
the client, the malicious leader can modify the table containing

c2 and the corresponding authentication tokens, and also lie
arbitrarily to clients requesting c2.

VI. CONCLUSIONS

In this work we presented SGAxe, a transient execution
attack that is able to recover SGX attestation keys from a fully
updated Intel machine which is trusted by Intel’s attestation
server. With access to this key, we demonstrate that we
can sign arbitrary attestation quotes, which are subsequently
considered genuine by Intel’s attestation servers. Thus, SGAxe
effectively breaks the most appealing feature of SGX, which is
the ability on an enclave to prove its trustworthiness over the
network. Finally, our work exposes the fragility of the SGX
ecosystem, where a single vulnerability can result in cascading
compromises that erode the security and trust properties of
SGX.

VII. ACKNOWLEDGMENTS

The authors would like to thank Marina Minkin for helpful
discussions in the course of this research.

This research was supported by the Defense Advanced
Research Projects Agency (DARPA) and Air Force Research
Laboratory (AFRL) under contracts FA8750-19-C-0531 and
HR001 120C0087, by the National Science Foundation un-
der grant CNS-1954712, by an Australian Research Council
Discovery Early Career Researcher Award (project number
DE200101577), and by generous gifts from Intel and AMD.

REFERENCES

[1] “Enterprise data and cloud security simplified,” https:
//www.anjuna.io/.

[2] “Azure confidential computing,” https://azure.microsoft.
com/en-us/solutions/confidential-compute/.

[3] “Signal,” https://signal.org/en/.
[4] “Introducing Signal PINs,” https://signal.org/blog/

signal-pins/, 2019.
[5] I. Anati, S. Gueron, S. Johnson, and V. Scarlata,

“Innovative technology for CPU based attestation and
sealing,” in HASP, vol. 13, 2013.

[6] Arm, “Arm TrustZone technology,” https://developer.
arm.com/ip-products/security-ip/trustzone.

[7] R. Bahmani, M. Barbosa, F. Brasser, B. Portela, A.-R.
Sadeghi, G. Scerri, and B. Warinschi, “Secure multi-
party computation from SGX,” in FC, 2017, pp. 477–
497.

[8] I. Bentov, Y. Ji, F. Zhang, L. Breidenbach, P. Da-
ian, and A. Juels, “Tesseract: Real-time cryptocurrency
exchange using trusted hardware,” in CCS, 2019, pp.
1521–1538.

[9] A. Bhattacharyya, A. Sandulescu, M. Neugschwandt-
ner, A. Sorniotti, B. Falsafi, M. Payer, and A. Kur-
mus, “SMoTherSpectre: Exploiting speculative execu-
tion through port contention,” in CCS, 2019.

[10] F. Brasser, U. Müller, A. Dmitrienko, K. Kostiainen,
S. Capkun, and A. Sadeghi, “Software grand exposure:
SGX cache attacks are practical,” in WOOT, 2017.

11

https://www.anjuna.io/
https://www.anjuna.io/
https://azure.microsoft.com/en-us/solutions/confidential-compute/
https://azure.microsoft.com/en-us/solutions/confidential-compute/
https://signal.org/en/
https://signal.org/blog/signal-pins/
https://signal.org/blog/signal-pins/
https://developer.arm.com/ip-products/security-ip/trustzone
https://developer.arm.com/ip-products/security-ip/trustzone

[11] S. Brenner, T. Hundt, G. Mazzeo, and R. Kapitza,
“Secure cloud micro services using Intel SGX,” in
DAIS, 2017, pp. 177–191.

[12] E. Brickell and J. Li, “Enhanced privacy ID from bilin-
ear pairing for hardware authentication and attestation,”
International Journal of Information Privacy, Security
and Integrity 2, vol. 1, no. 1, pp. 3–33, 2011.

[13] A. Cabrera Aldaya, C. Pereida Garcı́a, L. M. Al-
varez Tapia, and B. B. Brumley, “Cache-timing attacks
on RSA key generation,” TCHES, vol. 2019, no. 4, pp.
213–242, 2019.

[14] C. Canella, D. Genkin, L. Giner, D. Gruss, M. Lipp,
M. Minkin, D. Moghimi, F. Piessens, M. Schwarz,
B. Sunar, J. Van Bulck, and Y. Yarom, “Fallout: Leaking
data on Meltdown-resistant CPUs,” in CCS, 2019.

[15] C. Canella, J. Van Bulck, M. Schwarz, M. Lipp,
B. Von Berg, P. Ortner, F. Piessens, D. Evtyushkin,
and D. Gruss, “A systematic evaluation of transient
execution attacks and defenses,” in USENIX Security,
2019, pp. 249–266.

[16] G. Chen, W. Wang, T. Chen, S. Chen, Y. Zhang,
X. Wang, T.-H. Lai, and D. Lin, “Racing in hyperspace:
Closing hyper-threading side channels on SGX with
contrived data races,” in IEEE SP, 2018, pp. 178–194.

[17] G. Chen, S. Chen, Y. Xiao, Y. Zhang, Z. Lin, and T.-
H. Lai, “SgxPectre: Stealing Intel secrets from SGX
enclaves via speculative execution,” in Euro S&P, 2019,
pp. 142–157.

[18] R. Cheng, F. Zhang, J. Kos, W. He, N. Hynes, N. John-
son, A. Juels, A. Miller, and D. Song, “Ekiden: A
platform for confidentiality-preserving, trustworthy, and
performant smart contracts,” in IEEE SP, 2019.

[19] C. Copeland and H. Zhong, “Tangaroa: a Byzantine
fault tolerant Raft.”

[20] V. Costan and S. Devadas, “Intel SGX explained,” IACR
Cryptology ePrint Archive 2016/086, 2016.

[21] F. Dall, G. De Micheli, T. Eisenbarth, D. Genkin,
N. Heninger, A. Moghimi, and Y. Yarom, “Cachequote:
Efficiently recovering long-term secrets of SGX EPID
via cache attacks,” TCHES, pp. 171–191, 2018.

[22] Equinix Inc., “Security control for all clouds,” https:
//www.equinix.com/services/edge-services/smartkey/.

[23] D. Evtyushkin, R. Riley, N. C. Abu-Ghazaleh, ECE,
and D. Ponomarev, “Branchscope: A new side-channel
attack on directional branch predictor,” ACM SIGPLAN
Notices, vol. 53, no. 2, pp. 693–707, 2018.

[24] B. Fisch, D. Vinayagamurthy, D. Boneh, and S. Gor-
bunov, “Iron: functional encryption using Intel SGX,”
in CCS, 2017, pp. 765–782.

[25] Fortanix Inc., “Fortanix runtime encryption plat-
form,” https://www.fortanix.com/assets/Fortanix RTE
Platform Whitepaper.pdf, 2019.

[26] Y. Fu, E. Bauman, R. Quinonez, and Z. Lin, “SGX-
LAPD: Thwarting controlled side channel attacks via
enclave verifiable page faults,” in RAID, 2017, pp. 357–
380.

[27] B. Fuhry, R. Bahmani, F. Brasser, F. Hahn, F. Ker-
schbaum, and A.-R. Sadeghi, “HardIDX: Practical and
secure index with SGX,” in CODASPY, 2017, pp. 386–
408.

[28] Q. Ge, Y. Yarom, D. Cock, and G. Heiser, “A survey of
microarchitectural timing attacks and countermeasures
on contemporary hardware,” J. Cryptographic Engi-
neering, vol. 8, no. 1, pp. 1–27, 2018.

[29] D. Genkin, L. Pachmanov, E. Tromer, and Y. Yarom,
“Drive-by key-extraction cache attacks from portable
code,” in ACNS, 2018, pp. 83–102.

[30] D. Genkin, R. Poussier, R. Q. Sim, Y. Yarom, and
Y. Zhao, “Cache vs. key-dependency: Side channeling
an implementation of Pilsung,” TCHES, vol. 2020,
no. 1, pp. 231–255, 2020.

[31] J. Goldbard, M. Marlinspike, and S. Glynn, “Mobile-
Coin: A crypto-currency delivering best user expe-
rience in blockchain world,” https://static.coinpaprika.
com/storage/cdn/whitepapers/4235403.pdf, Nov. 2017.

[32] J. Götzfried, M. Eckert, S. Schinzel, and T. Müller,
“Cache attacks on Intel SGX,” in EuroSec, 2017, pp.
1–6.

[33] D. Gruss, R. Spreitzer, and S. Mangard, “Cache tem-
plate attacks: Automating attacks on inclusive last-level
caches,” in USENIX Security, 2015, pp. 897–912.

[34] J. A. Halderman, S. D. Schoen, N. Heninger, W. Clark-
son, W. Paul, J. A. Calandrino, A. J. Feldman, J. Ap-
pelbaum, and E. W. Felten, “Lest we remember: Cold-
boot attacks on encryption keys,” Communications of
the ACM, vol. 52, no. 5, pp. 91–98, 2009.

[35] M. Hoekstra, R. Lal, P. Pappachan, C. Rozas,
V. Phegade, and J. del Cuvillo, “Using innovative
instructions to create trustworthy software solutions,”
https://software.intel.com/content/www/us/en/develop/
articles/using-innovative-instructions-to-create-
trustworthy-software-solutions.html, Aug. 2013.

[36] J. Horn, “Speculative execution, variant 4: Specula-
tive store bypass,” https://bugs.chromium.org/p/project-
zero/issues/detail?id=1528, 2018.

[37] R. Hund, C. Willems, and T. Holz, “Practical timing
side channel attacks against kernel space ASLR,” in
NDSS, 2013.

[38] T. Hunt, Z. Zhu, Y. Xu, S. Peter, and E. Witchel,
“Ryoan: A distributed sandbox for untrusted compu-
tation on secret data,” ACM Transactions on Computer
Systems (TOCS), vol. 35, no. 4, pp. 1–32, 2018.

[39] IBM, “IBM cloud data shield,” https://www.ibm.com/
cloud/data-shield.

[40] Intel Software Guard Extensions for Linux OS, Intel,
https://github.com/01org/linux-sgx.

[41] Intel, “Deep dive: Intel analysis of L1 terminal fault,”
https://software.intel.com/security-software-guidance/
insights/deep-dive-intel-analysis-l1-terminal-fault, Aug
2018.

[42] ——, “Deep dive: Load value injection,”
=https://software.intel.com/security-software-

12

https://www.equinix.com/services/edge-services/smartkey/
https://www.equinix.com/services/edge-services/smartkey/
https://www.fortanix.com/assets/Fortanix_RTE_Platform_Whitepaper.pdf
https://www.fortanix.com/assets/Fortanix_RTE_Platform_Whitepaper.pdf
https://static.coinpaprika.com/storage/cdn/whitepapers/4235403.pdf
https://static.coinpaprika.com/storage/cdn/whitepapers/4235403.pdf
https://software.intel.com/content/www/us/en/develop/articles/using-innovative-instructions-to-create-trustworthy-software-solutions.html
https://software.intel.com/content/www/us/en/develop/articles/using-innovative-instructions-to-create-trustworthy-software-solutions.html
https://software.intel.com/content/www/us/en/develop/articles/using-innovative-instructions-to-create-trustworthy-software-solutions.html
https://bugs.chromium.org/p/project-zero/issues/detail?id=1528
https://bugs.chromium.org/p/project-zero/issues/detail?id=1528
https://www.ibm.com/cloud/data-shield
https://www.ibm.com/cloud/data-shield
https://github.com/01org/linux-sgx
https://software.intel.com/security-software-guidance/insights/deep-dive-intel-analysis-l1-terminal-fault
https://software.intel.com/security-software-guidance/insights/deep-dive-intel-analysis-l1-terminal-fault
=https://software.intel.com/security-software-guidance/insights/deep-dive-load-value-injection

guidance/insights/deep-dive-load-value-injection,
Mar 2020.

[43] ——, “Deep dive: Intel analysis of microarchitectural
data sampling,” https://software.intel.com/security-
software-guidance/insights/deep-dive-intel-analysis-
microarchitectural-data-sampling, May 2019.

[44] ——, “Deep dive: Intel transactional synchronization
extensions (Intel TSX) asynchronous abort,”
https://software.intel.com/security-software-guidance/
insights/deep-dive-intel-transactional-synchronization-
extensions-intel-tsx-asynchronous-abort, Nov 2019.

[45] Intel SGX and Side-Channels, Intel, https://software.
intel.com/en-us/articles/intel-sgx-and-side-channels.

[46] Intel Software Guard Extensions, Intel, https://software.
intel.com/sites/default/files/332680-001.pdf.

[47] Intel, “2019.2 IPU – Intel SGX with
Intel processor graphics update advisory,”
https://www.intel.com/content/www/us/en/security-
center/advisory/intel-sa-00219.html, Nov. 2019.

[48] Attestation Service for Intel Software Guard
Extensions (Intel SGX): API Documentation, Intel,
https://api.trustedservices.intel.com/documents/sgx-
attestation-api-spec.pdf.

[49] Intel Software Guard Extensions SDK for Linux
OS, Intel, 2016, https://01.org/sites/default/files/
documentation/intel sgx sdk developer reference
for linux os pdf.pdf.

[50] G. Irazoqui, T. Eisenbarth, and B. Sunar, “S$A: A
shared cache attack that works across cores and defies
VM sandboxing–and its application to AES,” in IEEE
SP, 2015.

[51] S. Islam, A. Moghimi, I. Bruhns, M. Krebbel, B. Gul-
mezoglu, T. Eisenbarth, and B. Sunar, “SPOILER:
Speculative load hazards boost Rowhammer and cache
attacks,” in USENIX Security, 2019, pp. 621–637.

[52] S. Johnson, V. Scarlata, C. Rozas, E. Brickell, and
F. Mckeen, “Intel software guard extensions: EPID pro-
visioning and attestation services,” White Paper, 2016.

[53] D. Kaplan, J. Powell, and T. Woller, “AMD memory
encryption,” White paper, 2016.

[54] V. Kiriansky and C. Waldspurger, “Speculative buffer
overflows: Attacks and defenses,” arXiv preprint
arXiv:1807.03757, 2018.

[55] P. Kocher, J. Horn, A. Fogh, , D. Genkin, D. Gruss,
W. Haas, M. Hamburg, M. Lipp, S. Mangard,
T. Prescher, M. Schwarz, and Y. Yarom, “Spectre at-
tacks: Exploiting speculative execution,” in IEEE SP,
2019.

[56] E. M. Koruyeh, K. N. Khasawneh, C. Song, and N. Abu-
Ghazaleh, “Spectre returns! speculation attacks using
the return stack buffer,” in WOOT, 2018.

[57] R. Krahn, B. Trach, A. Vahldiek-Oberwagner,
T. Knauth, P. Bhatotia, and C. Fetzer, “Pesos: Policy
enhanced secure object store,” in EuroSys, 2018.

[58] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas,
A. Fogh, J. Horn, S. Mangard, P. Kocher, D. Genkin,

Y. Yarom, and M. Hamburg, “Meltdown: Reading ker-
nel memory from user space,” in USENIX Security,
2018.

[59] F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee,
“Last-level cache side-channel attacks are practical,” in
IEEE SP, 2015.

[60] J. Lund, “Technology preview for secure value re-
covery,” https://signal.org/blog/secure-value-recovery/,
2019.

[61] A. Lutas and D. Lutas, “Security implications
of speculatively executing segmentation related
instructions on Intel CPUs,” https://businessresources.
bitdefender.com/hubfs/noindex/Bitdefender-
WhitePaper-INTEL-CPUs.pdf, Aug 2019.

[62] G. Maisuradze and C. Rossow, “ret2spec: Speculative
execution using return stack buffers,” in CCS, 2018, pp.
2109–2122.

[63] M. Marlinspike, “Technology preview: Private contact
discovery for Signal,” https://signal.org/blog/private-
contact-discovery/, 2017.

[64] C. Maurice, M. Weber, M. Schwarz, L. Giner, D. Gruss,
C. A. Boano, S. Mangard, and K. Römer, “Hello from
the other side: SSH over robust cache covert channels
in the cloud,” in NDSS, 2017.

[65] F. McKeen, I. Alexandrovich, A. Berenzon, C. V. Rozas,
H. Shafi, V. Shanbhogue, and U. R. Savagaonkar, “In-
novative instructions and software model for isolated
execution,” in HASP@ ISCA, 2013.

[66] A. Moghimi, G. Irazoqui, and T. Eisenbarth,
“CacheZoom: How SGX amplifies the power of
cache attacks,” in CHES, 2017, pp. 69–90.

[67] ——, “CacheZoom: How SGX amplifies the power of
cache attacks,” in CHES, 2017, pp. 69–90.

[68] D. Moghimi, M. Lipp, B. Sunar, and
M. Schwarz, “Medusa: Microarchitectural data
leakage via automated attack synthesis,”
in USENIX Security, Aug. 2020. [On-
line]. Available: https://www.usenix.org/conference/
usenixsecurity20/presentation/moghimi-medusa

[69] K. Murdock, D. Oswald, F. D. Garcia, J. Van Bulck,
D. Gruss, and F. Piessens, “Plundervolt: Software-based
fault injection attacks against Intel SGX,” in IEEE SP,
2020.

[70] B. Ngabonziza, D. Martin, A. Bailey, H. Cho, and
S. Martin, “TrustZone explained: Architectural features
and use cases,” in CIC, 2016, pp. 445–451.

[71] O. Oleksenko, B. Trach, R. Krahn, M. Silberstein,
and C. Fetzer, “Varys: Protecting SGX enclaves from
practical side-channel attacks,” in USENIX ATC, 2018,
pp. 227–240.

[72] D. Ongaro and J. Ousterhout, “In search of an under-
standable consensus algorithm,” in USENIX ATC, 2014,
pp. 305–319.

[73] D. A. Osvik, A. Shamir, and E. Tromer, “Cache attacks
and countermeasures: the case of AES,” in CT-RSA,
2006.

13

=https://software.intel.com/security-software-guidance/insights/deep-dive-load-value-injection
https://software.intel.com/security-software-guidance/insights/deep-dive-intel-analysis-microarchitectural-data-sampling
https://software.intel.com/security-software-guidance/insights/deep-dive-intel-analysis-microarchitectural-data-sampling
https://software.intel.com/security-software-guidance/insights/deep-dive-intel-analysis-microarchitectural-data-sampling
https://software.intel.com/security-software-guidance/insights/deep-dive-intel-transactional-synchronization-extensions-intel-tsx-asynchronous-abort
https://software.intel.com/security-software-guidance/insights/deep-dive-intel-transactional-synchronization-extensions-intel-tsx-asynchronous-abort
https://software.intel.com/security-software-guidance/insights/deep-dive-intel-transactional-synchronization-extensions-intel-tsx-asynchronous-abort
https://software.intel.com/en-us/articles/intel-sgx-and-side-channels
https://software.intel.com/en-us/articles/intel-sgx-and-side-channels
https://software.intel.com/sites/default/files/332680-001.pdf
https://software.intel.com/sites/default/files/332680-001.pdf
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00219.html
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00219.html
https://api.trustedservices.intel.com/documents/sgx-attestation-api-spec.pdf
https://api.trustedservices.intel.com/documents/sgx-attestation-api-spec.pdf
https://01.org/sites/default/files/documentation/intel_sgx_sdk_developer_reference_for_linux_os_pdf.pdf
https://01.org/sites/default/files/documentation/intel_sgx_sdk_developer_reference_for_linux_os_pdf.pdf
https://01.org/sites/default/files/documentation/intel_sgx_sdk_developer_reference_for_linux_os_pdf.pdf
https://signal.org/blog/secure-value-recovery/
https://businessresources.bitdefender.com/hubfs/noindex/Bitdefender-WhitePaper-INTEL-CPUs.pdf
https://businessresources.bitdefender.com/hubfs/noindex/Bitdefender-WhitePaper-INTEL-CPUs.pdf
https://businessresources.bitdefender.com/hubfs/noindex/Bitdefender-WhitePaper-INTEL-CPUs.pdf
https://signal.org/blog/private-contact-discovery/
https://signal.org/blog/private-contact-discovery/
https://www.usenix.org/conference/usenixsecurity20/presentation/moghimi-medusa
https://www.usenix.org/conference/usenixsecurity20/presentation/moghimi-medusa

[74] C. Percival, “Cache missing for fun and profit,” 2005.
[75] S. Pinto and N. Santos, “Demystifying Arm TrustZone:

A comprehensive survey,” ACM CSUR, vol. 51, no. 6,
pp. 1–36, 2019.

[76] C. Priebe, K. Vaswani, and M. Costa, “EnclaveDB: A
secure database using SGX,” in IEEE SP, 2018, pp.
264–278.

[77] S. Sasy, S. Gorbunov, and C. W. Fletcher, “Zero-
Trace: Oblivious memory primitives from Intel SGX,”
in NDSS, 2018.

[78] F. Schuster, M. Costa, C. Fournet, C. Gkantsidis,
M. Peinado, G. Mainar-Ruiz, and M. Russinovich,
“VC3: Trustworthy data analytics in the cloud using
SGX,” in IEEE SP, 2015, pp. 38–54.

[79] M. Schwarz, M. Lipp, D. Moghimi, J. Van Bulck,
J. Stecklina, T. Prescher, and D. Gruss, “ZombieLoad:
Cross-privilege-boundary data sampling,” in CCS, 2019.

[80] L. Shen, “Fortanix provides Intel SGX-protected KMS
with Alibaba cloud,” https://www.alibabacloud.com/
blog/fortanix-provides-intel%C2%AE-sgx-protected-
kms-with-alibaba-cloud 594075, Oct. 2018.

[81] M.-W. Shih, S. Lee, T. Kim, and M. Peinado, “T-SGX:
Eradicating controlled-channel attacks against enclave
programs.” in NDSS, 2017.

[82] J. Stecklina and T. Prescher, “LazyFP: Leaking FPU
register state using microarchitectural side-channels,”
arXiv preprint arXiv:1806.07480, 2018.

[83] N. Szabo, “Formalizing and securing relationships on
public networks,” First Monday, vol. 2, no. 9, 1997.

[84] C.-C. Tsai, D. E. Porter, and M. Vij, “Graphene-SGX:
A practical library OS for unmodified applications on
SGX,” in USENIX ATC, 2017, p. 8.

[85] J. Van Bulck, M. Minkin, O. Weisse, D. Genkin,
B. Kasikci, F. Piessens, M. Silberstein, T. Wenisch,
Y. Yarom, and R. Strackx, “Foreshadow: Extracting the
keys to the Intel SGX kingdom with transient out-of-
order execution,” in USENIX Security, 2018.

[86] J. Van Bulck, D. Moghimi, M. Schwarz, M. Lipp,
M. Minkin, D. Genkin, Y. Yuval, B. Sunar, D. Gruss,
and F. Piessens, “LVI: Hijacking transient execution
through microarchitectural load value injection,” in
IEEE SP, 2020.

[87] S. van Schaik, A. Milburn, S. Österlund, P. Frigo,
G. Maisuradze, K. Razavi, H. Bos, and C. Giuffrida,
“Rogue in-flight data load,” in IEEE SP, 2019.

[88] S. van Schaik, A. Milburn, S. Osterlund, P. Frigo,
G. Maisuradze, K. Razavi, H. Bos, and C. Giuffrida,
“Addendum a to RIDL: Rogue in-flight data load,”
2019.

[89] ——, “Addendum 2 to ridl: Rogue in-flight data load,”
2020.

[90] S. van Schaik, M. Minkin, A. Kwong, D. Genkin, and
Y. Yarom, “CacheOut: Leaking data on Intel CPUs via
cache evictions,” https://cacheoutattack.com/, 2020.

[91] W. Wang, G. Chen, X. Pan, Y. Zhang, X. Wang,
V. Bindschaedler, H. Tang, and C. A. Gunter, “Leaky

cauldron on the dark land: Understanding memory side-
channel hazards in SGX,” in CCS, 2017, pp. 2421–2434.

[92] S. Weiser, R. Spreitzer, and L. Bodner, “Single trace
attack against RSA key generation in Intel SGX SSL,”
in AsiaCCS, 2018, pp. 575–586.

[93] O. Weisse, J. Van Bulck, M. Minkin, D. Genkin,
B. Kasikci, F. Piessens, M. Silberstein, R. Strackx,
T. F. Wenisch, and Y. Yarom, “Foreshadow-NG:
Breaking the virtual memory abstraction with tran-
sient out-of-order execution,” https://foreshadowattack.
eu/foreshadow-NG.pdf, 2018.

[94] Y. Xu, W. Cui, and M. Peinado, “Controlled-channel
attacks: Deterministic side channels for untrusted oper-
ating systems,” in IEEE SP, 2015, pp. 640–656.

[95] M. Yan, C. W. Fletcher, and J. Torrellas, “Cache telepa-
thy: Leveraging shared resource attacks to learn DNN
architectures,” 2020.

[96] Y. Yarom and K. Falkner, “Flush+Reload: A high res-
olution, low noise, L3 cache side-channel attack,” in
USENIX Security, 2014.

[97] Y. Yarom, D. Genkin, and N. Heninger, “CacheBleed:
a timing attack on OpenSSL constant-time RSA,” J.
Cryptographic Engineering, vol. 7, no. 2, pp. 99–112,
2017.

[98] F. Zhang, E. Cecchetti, K. Croman, A. Juels, and
E. Shi, “Town crier: An authenticated data feed for
smart contracts,” in CCS, 2016, pp. 270–282.

[99] Y. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart,
“Cross-VM side channels and their use to extract private
keys,” in CCS, 2012, pp. 305–316.

[100] W. Zheng, A. Dave, J. Beekman, R. A. Popa, J. Gonza-
lez, and I. Stoica, “Opaque: An oblivious and encrypted
distributed analytics platform,” in NSDI, Boston, MA,
2017.

14

https://www.alibabacloud.com/blog/fortanix-provides-intel%C2%AE-sgx-protected-kms-with-alibaba-cloud_594075
https://www.alibabacloud.com/blog/fortanix-provides-intel%C2%AE-sgx-protected-kms-with-alibaba-cloud_594075
https://www.alibabacloud.com/blog/fortanix-provides-intel%C2%AE-sgx-protected-kms-with-alibaba-cloud_594075
https://cacheoutattack.com/
https://foreshadowattack.eu/foreshadow-NG.pdf
https://foreshadowattack.eu/foreshadow-NG.pdf

	Introduction
	Our Contributions
	Current Status and Disclosure
	Threat Model

	Background
	Intel Software Guard Extensions
	SGX's Sealing Mechanism
	Caching Hierarchy in Modern Processors
	Microarchitectural Attacks
	CacheOut and LVI: Ineffective Flushing

	Attacking SGX's Sealing Mechanism
	Extracting SGX Sealing Keys
	Empirical Evaluation
	EPID Key Recovery

	Attacking SGX Attestation
	SGX Remote Attestation
	Breaking SGX Attestation
	Empirical Evaluation

	Subverting SGX-Based Protocols
	Subverting Town Crier
	Subverting Signal's Private Contact Discovery
	Subverting Signal's Secure Value Recovery

	Conclusions
	Acknowledgments

